Commentary: As world waits for coronavirus vaccine, antibodies treatment a needed plan B

Commentary: As world waits for coronavirus vaccine, antibodies treatment a needed plan B

Funding organisations must invest more resources to overcome hurdles in developing antibody treatments for the coronavirus, say observers.

FILE PHOTO: A woman holds a small bottle labeled with a "Vaccine COVID-19" sticker and a
A woman holds a small bottle labeled with a "Vaccine COVID-19" sticker and a medical syringe in this illustration taken on Apr 10, 2020. (Photo: REUTERS/Dado Ruvic)

BRUSSELS: As many countries progressively relax their COVID-19 containment measures, preventing a renewed spread of the coronavirus from emerging infection clusters will be key to controlling the pandemic.

This will require the world to develop innovative new treatments.

So far, policymakers have relied on non-pharmaceutical interventions such as testing, contact tracing, and quarantines to prevent a second wave of infections. 

Meanwhile, the search for COVID-19 therapies and prophylactic medicines has focused on products that could be immediately available, meaning existing drugs that were developed to treat other conditions.

This approach has been largely unsuccessful, although a recent randomised clinical trial in the United Kingdom revealed that the dexamethasone corticosteroid reduced COVID-19 mortality in the most severe cases.

READ: Commentary: COVID-19 vaccine – why is it taking so long to develop one?

READ: Commentary: Can Vitamin D protect you from COVID-19? There may be something to it

VACCINES STILL HOLD THE KEY TO A POST-CORONAVIRUS WORLD

Vaccines will of course be essential to overcoming COVID-19. But if and when they become available, it will still take many months to vaccinate enough people so that societies reach the level of collective immunity needed to halt the coronavirus.

The efficiency of any vaccine will likely vary depending on a person’s genetic background, associated diseases, and age. Furthermore, vaccine access and coverage might be limited by production capabilities, economic considerations, and anti-vaccine sentiment among the population.

FILE PHOTO: Small bottles labeled with a "Vaccine COVID-19" sticker and a medical syringe
Small bottles labeled with a "Vaccine COVID-19" sticker and a medical syringe are seen in this illustration taken taken on Apr 10, 2020. (Photo: REUTERS/Dado Ruvic)

That means we must also focus on developing new weapons that can directly target SARS-CoV-2, the virus that causes COVID-19. And, besides anti-viral chemical drugs, genetically engineered antibodies might be ideal for this purpose.

Such antibodies are precisely tailored to neutralise the proteins that allow the SARS-CoV-2 virus to penetrate human cells. Moreover, they provide immediate immunity, which is critical not only to minimize organ damage but also to protect health-care professionals and the infected person’s contacts.

The concept behind this type of immunotherapy was pioneered in France and Germany more than a century ago, when antibodies contained in the serum of immunized animals saved the lives of thousands of children during diphtheria epidemics. 

The same principle lies behind the current clinical trials using plasma from recovering COVID-19 patients. But because not all antibodies are protective – indeed, some can even aggravate disease – researchers are focusing on those known for their anti-viral activity.

READ: Commentary: Infecting volunteers with COVID-19 may speed up vaccine development

READ: Commentary: What if a COVID-19 vaccine doesn’t emerge?

DEVELOPING ANTIBODIES MAY HELP

Contemporary genetic engineering can produce highly specific humanised antibodies. Although these biological agents are best known for revolutionizing the treatment of cancer and autoimmune diseases, there is already evidence of their efficacy as anti-infectious agents.

For example, the palivizumab antibody is used to prevent respiratory syncytial virus infections in infants, while other antibodies have been found to prevent or treat anthrax. Another has proven effective in helping HIV-infected people who are resistant to standard treatments.

Most recently and relevantly, a cocktail of antibodies soon to be approved by the US Food and Drug Administration (FDA) was found to reduce Ebola mortality among patients.

Regeneron Pharmaceuticals, the US biotechnology firm that produced the Ebola antibodies, is now using its proprietary technology to develop a cocktail of two COVID-19 antibodies that are currently being tested in human trials. 

On Jul 7, Regeneron Pharmaceuticals announced that it had received a US$450 million contract to manufacture and supply the antibody cocktail as part of the Biomedical Advanced Research and Development Authority’s (BARDA) Operation Warp Speed.

FILE PHOTO: A woman holds a small bottle labeled with a "Vaccine COVID-19" sticker and a
A woman holds a small bottle labeled with a "Vaccine COVID-19" sticker and a medical syringe in this illustration taken on Apr 10, 2020. (Photo: REUTERS/Dado Ruvic)

Several other companies are developing antibodies with the help of US government funding via the Accelerating COVID-19 Therapeutic Interventions and Vaccines partnership.

This initiative involves BARDA, the National Institutes of Health, the FDA, and the US Department of Defense, together with major pharmaceutical firms and philanthropic organizations such as the Bill & Melinda Gates Foundation.

Unfortunately, antibody therapies are currently receiving less attention in the European Commission’s Coronavirus Global Response. This effort, which the Commission developed in collaboration with other governmental, corporate, and philanthropic organizations, aims to support the Access to COVID-19 Tools (ACT) Accelerator that the World Health Organization and other global partners launched in April.

But the Economist Intelligence Unit reports that the COVID-19 Therapeutics Accelerator, a co-convenor of the ACT initiative, had so far invested only US$59 million, mostly in clinical trials exploring the potential benefits of repurposed drugs.

READ: Commentary: Europe learns lifting COVID-19 lockdowns doesn’t come cheap

LISTEN: Why lifting lockdowns and easing restrictions may be the biggest COVID-19 test facing countries

Several challenges still need to be addressed before genetically engineered antibodies can join the fight against COVID-19. These include increasing the antibodies’ stability in vivo to optimize the number of doses required, and decreasing manufacturing costs in order to make the therapy economically viable.

Funding organisations must now invest more resources to overcome these remaining hurdles. 

The rewards are potentially huge: Antibody treatments that not only rapidly control viral replication in COVID-19 patients, but possibly also prevent vulnerable individuals from contracting the disease.

Michel Goldman, founder and co-director of the Institute for Interdisciplinary Innovation in Healthcare (I3h) and Professor of Immunology at the Université Libre de Bruxelles, was Executive Director of the Innovative Medicines Initiative from 2009 to 2014. 

Michel Kazatchkine, a senior fellow at the Graduate Institute of International and Development Studies in Geneva and a member of the Global Commission on Drug Policy, was Executive Director of the Global Fund to Fight AIDS, Tuberculosis, and Malaria from 2007 to 2012.

Source: Project Syndicate/sl

Bookmark