Commentary: Those new coronavirus variants sure are worrisome

Commentary: Those new coronavirus variants sure are worrisome

Reports of COVID-19 mutations that move faster and are potentially deadlier have already hit several countries. A virologist explains how these variants come about and what can be done.

FILE PHOTO: Coronavirus testing site in Ealing, West London
FILE PHOTO: People queue for a COVID-19 swab test, after a new SARS-CoV-2 coronavirus variant originating from South Africa was discovered, in Ealing, West London, Britain February 2, 2021. REUTERS/Henry Nicholls/File Photo

HARTFORD, Connecticut: Spring has sprung, and there is a sense of relief in the air. 

After one year of lockdowns and social distancing, more than 171 million COVID-19 vaccine doses have been administered in the US and about 19.4 per cent of the population is fully vaccinated.

But there is something else in the air: Ominous SARS-CoV-2 variants.

READ: UK variant of COVID-19 is now most common strain in United States: CDC

We humans are in a race to become immune against this cagey virus, whose ability to mutate and adapt seems to be a step ahead of our capacity to gain herd immunity. Because of the variants that are emerging, it could be a race to the wire.

FIVE VARIANTS TO WATCH

RNA viruses like SARS-CoV-2 constantly mutate as they make more copies of themselves. Most of these mutations end up being disadvantageous to the virus and therefore disappear through natural selection.

Occasionally, though, they offer a benefit to the mutated or so-called genetic-variant virus. An example would be a mutation that improves the ability of the virus to attach more tightly to human cells, thus enhancing viral replication.

Vaccine Vs. Variant: Israel's race against the pandemic
A technician holds a test-tube as she works at Healthcare Maintenance Organisation (HMO) Maccabi's coronavirus disease (COVID-19) public laboratory, performing diverse and numerous tests, in Rehovot, Israel February 9, 2021. REUTERS/Ammar Awad

Another would be a mutation that allows the virus to spread more easily from person to person, thus increasing transmissibility.

None of this is surprising for a virus that is a fresh arrival in the human population and still adapting to humans as hosts. While viruses don’t think, they are governed by the same evolutionary drive that all organisms are – their first order of business is to perpetuate themselves.

READ: Brazil confirms first case of South African variant, makes room for soaring COVID-19 deaths

These mutations have resulted in several new SARS-CoV-2 variants, leading to outbreak clusters, and in some cases, global spread. They are broadly classified as variants of interest, concern or high consequence.

Currently there are five variants of concern circulating in the US: the B117, which originated in the UK, the B.1.351 of South African origin, the P.1., first seen in Brazil and the B.1.427 and B.1.429, both originating in California.

Each of these variants has a number of mutations, and some of these are key mutations in critical regions of the viral genome. Because the spike protein is required for the virus to attach to human cells, it carries a number of these key mutations.

In addition, antibodies that neutralise the virus typically bind to the spike protein, thus making the spike sequence or protein a key component of COVID-19 vaccines.

India and California have recently detected “double mutant” variants that, although not yet classified, have gained international interest. They have one key mutation in the spike protein similar to one found in the Brazilian and South African variants, and another already found in the B.1.427 and B.1.429 California variants.

READ: Japan fears COVID-19 variants are behind possible fourth wave

As of today, no variant has been classified as of high consequence, although the concern is that this could change as new variants emerge and we learn more about the variants already circulating.

MORE TRANSMISSION AND WORSE DISEASE

These variants are worrisome for several reasons. First, the SARS-CoV-2 variants of concern generally spread from person to person at least 20 per cent to 50 per cent more easily. This allows them to infect more people and to spread more quickly and widely, eventually becoming the predominant strain.

For example, the B117 UK variant that was first detected in the US in December 2020 is now the prevalent circulating strain in the US, accounting for an estimated 27.2 per cent of all cases by mid-March.

South Africa approaching 1 million COVID-19 infections as battles new variant
A medical staff attends to a COVID-19 patient at a special ward at Arwyp Medical Centre, as South Africa is about the reach a milestone of 1 million infections, in Kempton Park, South Africa, Dec 25, 2020. (Photo: REUTERS/Shafiek Tassiem)

Likewise, the P.1 variant first detected in travelers from Brazil in January is now wreaking havoc in Brazil, where it is causing a collapse of the health care system and led to at least 60,000 deaths in the month of March.

Second, SARS-CoV-2 variants of concern can also lead to more severe disease and increased hospitalisations and deaths. In other words, they may have enhanced virulence. Indeed, a recent study in England suggests that the B117 variant causes more severe illness and mortality.

READ: Commentary: Japan’s slow-mo vaccination programme has a lot riding on it

Another concern is that these new variants can escape the immunity elicited by natural infection or our current vaccination efforts. For example, antibodies from people who recovered after infection or who have received a vaccine may not be able to bind as efficiently to a new variant virus, resulting in reduced neutralisation of that variant virus.

This could lead to reinfections and lower the effectiveness of current monoclonal antibody treatments and vaccines.

Researchers are intensely investigating whether there will be reduced vaccine efficacy against these variants. While most vaccines seem to remain effective against the UK variant, one recent study showed that the AstraZeneca vaccine lacks efficacy in preventing mild to moderate COVID-19 due to the B.1.351 South African variant.

On the other hand, Pfizer recently announced data from a subset of volunteers in South Africa that supports high efficacy of its mRNA vaccine against the B.1.351 variant. 

Other encouraging news is that T-cell immune responses elicited by natural SARS-CoV-2 infection or mRNA vaccination recognize all three UK, South Africa, and Brazil variants.

Virus Outbreak Britain
Travellers arrive at Heathrow Airport in London, Sunday, Jan 17, 2021. The UK will close all travel corridors from Monday morning to protect against the coronavirus with travellers entering the country from overseas are required to have proof of a negative COVID-19 test. (Photo: AP Photo/Frank Augstein)

This suggests that even with reduced neutralising antibody activity, T-cell responses stimulated by vaccination or natural infection will provide a degree of protection against such variants.

STAY VIGILANT, AND GET VACCINATED

While current vaccines may not prevent mild symptomatic COVID-19 caused by these variants, they will likely prevent moderate and severe disease, and in particular hospitalisations and deaths. That is the good news.

However, it is imperative to assume that current SARS-CoV-2 variants will likely continue to evolve and adapt. In a recent survey of 77 epidemiologists from 28 countries, the majority believed that within a year current vaccines could need to be updated to better handle new variants, and that low vaccine coverage will likely facilitate the emergence of such variants.

READ: Commentary: How COVID-19 vaccines are being weaponised as countries jostle for influence

We need to keep doing what we have been doing: using masks, avoiding poorly ventilated areas, and practicing social distancing techniques to slow transmission and avert further waves driven by these new variants.

We also need to vaccinate as many people in as many places and as soon as possible to reduce the number of cases and the likelihood for the virus to generate new variants and escape mutants.

And for that, it is vital that public health officials, governments and nongovernmental organisations address vaccine hesitancy and equity both locally and globally.

Paulo Verardi is an Associate Professor of Virology and Vaccinology at the University of Connecticut. This commentary first appeared in The Conversation.


Source: CNA/cr

Bookmark